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Abstract

We are interested in statistical inference for the finite-time ruin probability of an insurance surplus
whose claim process has a long-range dependence. As an approximated model, we consider a surplus
driven by a fractional Brownian motion with the Hurst parameter H > 1/2. We can compute the ruin
probability via the Monte Carlo simulations if some unknown parameters in the model are decided.
From discrete samples, we estimate those unknowns, by which an asymptotically normal estimator of
the ruin probability is computed. An expression of the asymptotic variance is given via the Malliavin
Calculus in the estimable form. As a result, we can construct a confidence interval of the finite-time
ruin probability. Since the ruin is usually rare event, an importance sampling technique is sometimes
usuful in computation in practice.

Key words: finite-time ruin probability, fractional Brownian motion, confidence interval, importance
sampling, Malliavin calculus.

1 Insurance surplus with dependent claims

In the classical ruin theory, the insurance surplus is descrtibed by a drifted compound Poisson process
such as

Xt = x+ ct−
Nt∑
i=1

Ui,

where x, c > 0, N is a Poisson process, and Ui’s are IID random variables with mean µ, each of which
represents a claim size. However the IID assumption is often not realistic in a certain insurance contract
because large claims will be succesilve once a large claim has occurred. Therefore it would be better to
assume that Ui’s are correlated each other. However, such correlated surplus model is mathematically
intractable.

Considering a sequence of surplus processes with suitable dependency structure among claims, we see
that a drifted fractional Brownian motion (fBM) appeared as a week convergence limit. So we consider
the following surplus process:

Xt = u+ ρ0t− σ0Bt, t ≥ 0 (1.1)

where u, σ0, ρ0 > 0 and B = (Bt)t≥0 is a fBm with the Hurst parameter H > 1/2, that is, B is a zero
mean Gaussian process with the covariance function RH(t, s) := E [BtBs] given by

RH(t, s) =
1

2

(
t2H + s2H − |t− s|2H

)
(1.2)
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2 Inference for ruin probability of fBM

= H(2H − 1)

∫ t

0

∫ s

0

|r − u|2H−2 drdu (1.3)

Note that V ar(Bt) = t2H , and that B is a standard Brownian motion when H = 1/2. Throughout the
paper, we assume the Hurst parameter H is known for a technical reason. An important property for
fBm is a self-similarity: for any T > 0,

L (BTt, t ≥ 0) = L
(
THBt, t ≥ 0

)
, (1.4)

where L(Xt, t ≥ 0) stands for the distribution of the process X = (Xt)t≥0.
We assume that ρ0 is given by

ρ0 = θ · σ0,

for some known constant θ ≥ 0 and unknown σ0. If ρ0 > 0 is just a premium, then this is the standard
deviation principle:

ρ0 = E[S1] + θ
√
V ar(S1) = θ · σ0.

When θ = 0, we can interpret that ρ0 is determined by the expectation principle: ρ0 = (1 + θ̃)E[S1] = 0

for some θ̃ > 0.
Our interest is to estimate the finite-time ruin probability: for any T ∈ (0,∞],

ψ(u, T ) = P(τ ≤ T ) = E
[
1{σ·sup0≤t≤T (Bt−θt)>u}

]
, (1.5)

where τ := inf{t > 0 |Xt < 0} is the time of ruin for the surplus X, and 1A = 1A(ω) (ω ∈ Ω) is the
indicator function for A ∈ F , that is, 1A = 1 if ω ∈ A, and zero otherwise.

ψ(u,∞) := lim
T→∞

ψ(u, T )

is the ultimate ruin probability. Since ψ depends on the value of σ0, we will also write as

ψσ0(u, T ) := ψ(u, T ).

2 Statistical problems

Suppose that we have the past surplus data in [0, T0]-interval T0 > 0 at discrete time points tnk =
kT0/n (k = 0, 1, 2, . . . , n), and put

Xk := Xtnk
, k = 0, 1, . . . , n. (2.1)

Our goal is to estimate the finite-time ruin probability from the diescrete data {Xk}k=0,1,...,n: for each
T ∈ (0,∞],

2.1 Estimation of σ0

We give the maximum likelihood estimatar σ̂n of σ0 from the observations

Y = (X1 − x,X2 − x, · · · , Xn − x)⊤.

We use the following notation:
Y = σθt+ σB,

where t = (tn1 , t
n
2 , · · · , tnn)⊤ and B = (Btn1

, · · · , Btnn
)⊤. Then the likelihood of Y is given by

pn(σ) = (2πσ2)−
n
2 |ΓH |− 1

2 exp(− 1

2σ2
(Y − σθt)⊤Γ−1

H (Y − σθt)),
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since the random vector the process B is a Gaussian process with covariance ΓH whose (i, j)-component
is given by

(ΓH)ij = Cov(Btni
, Btnj

) =
1

2

(
T0
n

)2H

(i2H + j2H − |i− j|2H), 1 ≤ i, j ≤ n

Following the steps of maximum likelihood method, we have that

σ̂n =
−θt⊤Γ−1

H Y +
√
(θt⊤Γ−1

H Y )2 + 4nY ⊤Γ−1
H Y

2n

Then, by the standard argument of M -estimation theory, the asymptotic normality of σ̂n is obtained.

Theorem 1. Suppose that H > 1/2 is known. Then we have

√
n(σ̂n − σ0)

D−→ N

(
0,
σ2
0

2

)
, n→ ∞.

2.2 Delta-method

Using this estimator of σ0, we can estimate ψ by

ψ̂(u, T ) := ψσ̂n
(u, T ),

and, due to the delta method, it follows that

√
n
(
ψ̂(u, T )− ψ(u, T )

)
D−→ N

(
0, [∂σψσ0 ]

2σ
2
0

2

)
, n→ ∞,

if ψσ is differentiable at σ = σ0. This leads us an α-confidence interval for ψ(u, T ) such as

Iα(ψ) :=

[
ψ̂(u, T )−

zα/2√
2n
∂σψσ̂n

(u, T )σ̂n, ψ̂(u, T ) +
zα/2√
2n
∂σψσ̂n

(u, T )σ̂n

]
(2.2)

where zα stands for the upper α-quantile. Now, the problem is to compute the following quantity:

∂kσψσ(u, T ) =

(
∂

∂σ

)k

E
[
1{τ≤T}

]
, k = 0, 1. (2.3)

2.3 Importance sampling for fBm surplus

Consider a process M = (Mt)t∈[0,T ] denoted by

Mt =

∫ t

0

w(t, s) dBs,

where w(t, s) = c1s
1/2−H(t− s)1/2−H , c1 =

(
2Hβ

(
3
2 −H,H + 1

2

))−1
, and β is the beta function. Then,

according to Norros et al. [5], Theorem 3.1, M is a square integrable, zero-mean martingale with

⟨M,M⟩t := E[M2
t ] = c22t

2−2H ,

where c2 =
[
H(2H − 1)(2− 2H)β(H − 1

2 , 2− 2H)
]−1/2

.
Denote by Et(M) the stochastic exponent of M :

Et(M) := exp

(
Mt −

1

2
⟨M,M⟩t

)
,
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then this is a martingale with mean 1. For a ∈ R, let Pa be a probability measure on (Ω,F , (Ft)t≥0)
defined by

dPa

dP
= Et(aM) on Ft.

We have the following Girsanov type formula for fBm. In the sequel, we shall write Ea for the expectation
with respect to Pa, and in particular, E := E0. We note that, for an Ft-measurable X,

Eb[X] = Ea

[
XEb,a

t (M)
]
, Eb,a

t (M) :=
Et(bM)

Et(aM)

Lemma 1 (Norros et al. [5], Theorem 4.1). Suppose that B is a fractional Brownian motion with the
Hurst parameter H under P. Then BH

t (a) := Bt − at is a fractional Brownian motion with the Hurst
paramete H under Pa.

Let ηa(v) be a hitting time denoted by

ηa(v) := inf{t > 0 |Bt + at > v}. (2.4)

Then we see for any a ∈ R that

ηa

(u
σ

)
= inf{t > 0 | [Bt + (θ + a)t]− θt > u/σ},

and note that Bt + (θ + a)t is fBm under P−(θ+a). Then, noticing that E(M) is a martingale, we have

ψ(u, T ) = P (τ ≤ T )

= E−(θ+a)

[
1{ηa(u

σ )≤T}

]
= E

[
1{ηa(u

σ )≤T}ET (−(a+ θ)M)
]

= E
[
E
[
ET (−(a+ θ)M)

∣∣∣Fηa(u
σ )∧T

]
1{ηa(u

σ )≤T}

]
= E

[
Eηa(u

σ )
(−(a+ θ)M)1{ηa(u

σ )≤T}

]
.

Hence

ψσ(u, T ) = E

[
exp

(
−(a+ θ)

∫ ηa(u
σ )

0

w(t, s) dBs −
1

2
(a+ θ)2c22η

2−2H
a

(u
σ

))
1{ηa(u

σ )≤T}

]
(2.5)

for any a ∈ R. Note that, for given u, σ > 0, it follows that

lim
a→∞

1{ηa(u
σ )≤T} = 1 a.s. (2.6)

So if we take a > 0 large enough, then the integrand almost values positive, which will improve a
computation of ψ(u, T ) by the Monte Carlo procedure. In particular, letting T → ∞ in the both sides
of (2.5), the monotone convergence theorem yields an expression of ultimate ruin probability: for any
a > 0,

ψ(u) = E

[
exp

(
−(a+ θ)

∫ ηa(u
σ )

0

w(t, s) dBs −
1

2
(a+ θ)2c22η

2−2H
a

(u
σ

))]
.

We will use the expression (2.5) when we compute ψ(u, T ) for given σ.
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3 Malliavin calculus

3.1 Analysis on Wiener space

This section gives a breif introduction to the Malliavin calculus for fBm; see Nualart [6], Chapter 5.
Thanks to this theory, we can deduce the expression (2.3) for ∂σψ(u, T ) without differential sign.

Let H = L2([0, T ]) with the inner product ⟨f, g⟩H =
∫ T

0
f(x)g(x) dx, and

W (h) =

∫ T

0

ht dWt, h ∈ H,

where W = (Wt)t≥0 is a standard Brownian motion. Let S be the set of random variable F of the form

F = f (W (h1), . . . ,W (hn)) , f ∈ C∞
p (Rn), (3.1)

where C∞
p (Rn) is the set of all functions on Rn of class C∞ and all of their derivatives are of polynomial

grwoth, and hi (i = 1, . . . , n) ∈ H. Then S is dense in L2(Ω). We denote by L2(Ω;H) the family of
H-valued square integrable random variables.

Definition 1. The Malliavin derivative DWF of F ∈ S is de as the process (DW
t F )t≥0 of L2(Ω;H) with

values in L2(Ω) such that

DW
t F =

n∑
i=1

∂f

∂xi
(W (h1), . . . ,W (hn))hi(t), t ≥ 0, a.s. (3.2)

A norm in S is defined as follows:

∥F∥1,2 =

(
E|F |2 + E

∫ T

0

|DW
t F |2 dt

)1/2

,

and denote by D1,2 the Banach space which is the closure of S with respect to ∥ · ∥1,2. Therefore D1,2

defines the domain of the operator DW . It will be easy to see from the definition that, for G,F ∈ D1,2,

DW (GF ) = G ·DWF +DWG · F.

The adjoint operator δW is given as follows.

Definition 2. The operator δW is an unbounded operator on L2(Ω;H) such that

(i) Let u be a stochastic process u. Then u ∈ Dom δW if for any F ∈ D1,2, we have

|E[⟨DWF, u⟩H ]| ≤ C(u)∥F∥2, (3.3)

where C(u) is a constant depending on u.

(ii) If u ∈ Dom δW , then δW (u) ∈ L2(Ω) is characterized by

E[FδW (u)] = E
[
⟨DWF, u⟩H

]
. (3.4)

Equation (3.4) is often called the integration-by-parts formula in Malliavin calculus.

Properties for DW and δW :
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(P1) Let φ : Rn → R be a continuously differentiable function with bounded partial derivatives, and let
F = (F1, . . . , Fn) be a random vector whose components belong to D1,2. Then φ(F ) ∈ D1,2, and

DW
t φ(F ) =

n∑
i=1

∂φ

∂xi
(F )DW

t Fi, t ≥ 0 a.s.

(P2) For an adapted process u ∈ L2(Ω;H),

δW (u) =W (u) =

∫ T

0

u(t) dWt.

In particular, u is said to be Skorohod integrable if u ∈ Dom δ.

(P3) Let F ∈ D1,2 and u ∈ Dom δW such that Fu ∈ L2(Ω;H). Then Fu ∈ Dom δW and it follows that

δW (Fu) = FδW (u)− ⟨DWF, u⟩ ∈ L2(Ω).

3.2 Representation for fBm

Next, we will give Malliavin operators for fBm. Consider a fBm B = (Bt)t≥0 with the Hurst parameter

1

2
< H < 1.

Denote by H the closure of the set of step functions on [0, T ] with respect to the inner product

⟨1[0,t],1[0,s]⟩H = H(2H − 1)

∫ t

0

∫ s

0

|r − u|2H−2 dudr,

which yields that, for any φ, ϕ ∈ H,

⟨φ, ϕ⟩H = H(2H − 1)

∫ T

0

∫ T

0

|r − u|2H−2φ(r)ϕ(u) dudr,

Consider the square integrable kernel

KH(t, s) = cHs
1/2−H

∫ t

s

(u− s)H−3/2uH−1/2 du, t > s, (3.5)

where cH =
[

H(2H−1)
β(2−2H,H−1/2)

]1/2
and β is the beta function. Using the kernel (3.5), we denote the linear

operatpr K∗
H : H → H by

(K∗
Hφ)(s) =

∫ T

s

φ(u)
∂KH

∂t
(t, s) dt, φ ∈ H. (3.6)

It is known that fBm B has a stochastic integral representation:

B(φ) :=

∫ T

0

φ(s) dBs =

∫ T

0

(K∗
Hφ)(s) dWs =W (K∗

Hφ). (3.7)

In particular, taking φ(s) = 1[0,t](s), we have that B(φ) = Bt.
We will define the Malliavin derivative D and the divergence operator δ associated with B in a similar

way to the DW and δW in Definitions 1 and 2, respectively. Since Wt = B
(
(K∗

H)−1(1[0,t])
)
, F ∈ S is

represented as
F = f(B(φ1), . . . , B(φn))
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for some f ∈ C∞
p (Rn) and φi ∈ H. So we will define the Malliavin derivative associated with B by

DF =
n∑

i=1

∂f

∂xi
(B(φ1), . . . , B(φn))φi(t), t ≥ 0, a.s., (3.8)

and denote by δ the dual operator:

E [Fδ(u)] = E[⟨DF, u⟩H]. (3.9)

Due to the propertiy B(φ) = W (K∗
Hφ), we have the following convenient transfer principles (see

Nualart [6], Section 5.2).

Transfer principle:

(P4) For any F ∈ D1,2,
K∗

HDF = DWF

(P5) For any u ∈ Dom δ := (K∗
H)−1Dom δW ∩H,

δ(u) = δW (K∗
Hu) ∈ L2(Ω).

(P6) For any functions f, g ∈ H,
⟨f, g⟩H = ⟨K∗

Hf,K
∗
Hg⟩H .

4 Differentiability of ψσ

Consider a probability space (Ω,F ,P) endowed with a Wiener process W = (Wt)t≥0. Then a fractional
Brownian motion B = (Bt)t≥0 given by

Bt =

∫ t

0

KH(t, s) dWs, t ≥ 0.

In the sequel, we use the following notation:

Bt(θ) := Bt − θt, B∗
t (θ) := sup

s∈[0,t]

Bs(θ), τ∗t (θ) := arg max
s∈[0,t]

Bs(θ).

We sometimes omit θ in the above notation if the dependency is clear from the context:

B∗
T := B∗

T (θ), τ∗T := τ∗T (θ).

Denote by C∞
b (R) and C∞

K (R) the sets of infinitely differentiable functions with all the derivatives
bounded, and with the compact supports, respectively. We prepare the auxiliary function Ψ ∈ C∞

b

such that

Ψ ∈ C∞
b (R), Ψ(x) =

{
1 if x ≤ u/2
0 if x ≥ u

,

where u is the initial value of the surplus X.
The following main theorem is given via the Malliavin calculus.

Theorem 2. For given θ ∈ R and T > 0, suppose that

F θ
T :=

B∗
T (θ)E

0,θ
T (M)∫ T

0
KH(τ∗T (θ), s)Ψ(B∗

s (θ)) ds
∈ L2(Pθ).

Then the ruin probability ψσ(u, T ) is differentiable in σ ∈ (0,∞), and

∂σψσ(u, T ) = σ−1Eθ

[
1{τ≤T} · δW

(
F θ
TΨ(B∗

· (θ))
)]
, (4.1)

where δW is the Skorohod integral under Pθ.
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5 Numerical Results

Generating N = 10000 sample paths of X with u = 0.1, θ = 2, σ = 1,H = 0.6, we estimate the values of
σ̂n and ψσ̂n(u, T ) in each sample path with sample sizes n = 100 and 500 , respectively.

n 100 500 1000 TRUE
σ̂ 0.99751 0.99941 0.99985 1

(s.d.) (0.0692) (0.0314) (0.0225)
ψσ̂ 0.36446 0.39646 0.40252 0.40245

(s.d.) (0.1194) (0.1118) (0.1106)

5.1 Verifying the Delta Method

Since a derivative formula in Theorem 2 is still not available directly to Mote Calro simulation since the
integrand of the Skorokhod integral includs τ∗T that is not differentiable in the Malliavin sense. So we
use m = 10000 estimations σ̂1 < · · · < σ̂m to calculate ψσ̂1 , · · · , ψσ̂m in the same way of getting ψσ plot
them in the graph below and consider to get a numerical derivative. Since it seems that the points are
roughly in straight lines as in Fig. 5.1, we then approximate the derivatives ∂σψσ̂1 , · · · , ∂σψσ̂m by the
slopes of the linear regression lines. Then we can construct m confidence intervals of level α as We check
that how many confidence intervals contain the ψσ(u, T ) = 0.40245.

α n = 500 n = 1000
99% 95.48 99.13
95% 87.02 94.84
90% 79.81 89.55

Though the result for n = 500 is not very satisfactory because the {ψσ̂k
} computed when n = 500 are

mostly smaller than ψσ(u, T ) = 0.40245, we may conclude that the Delta Method holds for ψσ from the
result for n = 1000.
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Figure 1: ψσ̂1 , · · · , ψσ̂m plotted against σ̂1, · · · , σ̂m,
m=10000.
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Figure 2: ψσ and its 95% confidence interval for different
initial values (u). The solid line is the value of ψσ(u),
and the dashed line is the endpoints of the confidence
intervals.


